Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный аграрный университет»

Институт строительства, природообустройства и ландшафтной архитектуры Кафедра строительства зданий и сооружений

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ текущего контроля/промежуточной аттестации обучающихся при освоении ОПОП ВО, реализующей ФГОС ВО

по дисциплине «Механика. Механика жидкости и газа»

> Уровень высшего образования БАКАЛАВРИАТ

Направленность образовательной программы (профиль)

Промышленное и гражданское строительство

Очная, очно-заочная форма обучения

Год начала подготовки 2025г

Санкт-Петербург 2025 г

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

Таблица 1

	T		Таолица Т
$N_{\underline{0}}$	Формируемые	Контролируемые	Оценочное
	компетенции	разделы (темы)	средство
		дисциплины	_
1.	ОПК-1. Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата ОПК-1 иопк-1.4 Выбор базовых физических законов для решения задач профессиональной деятельности Знать Базовые физические законы для решения задач профессиональной деятельности; Уметь Выбирать базовые физические законы для решения задач профессиональной деятельности; Владеть Навыками выбирать базовые физические законы для решения задач профессиональной деятельности;	Гидростатика, гидродинамика, техническая термодинамика, основы теории теплопередачи	коллоквиум, тесты
2.	ОПК-3.Применение ранее разработанных концепций, методик (алгоритмов) с использованием исторических сведений для принятия решения в профессиональной деятельности ОПКЗ иопк-з.10. Использование теоретических основ строительства для принятия решения в профессиональной деятельности Знать Теоретические основы строительства для принятия решения в профессиональной деятельности; Уметь Использовать теоретические основы строительства для принятия решения в профессиональной деятельности; Владеть Способностью использовать теоретические основы строительства для принятия решения в профессиональной деятельности;	Гидростатика, гидродинамика, техническая термодинамика, основы теории теплопередачи	коллоквиум, тесты

2. ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ

Таблица 2

№	Наименование	Краткая характеристика	Представление
	оценочного	оценочного средства	оценочного
	средства		средства в фонде
1.		Средство контроля усвоения	
		учебного материала темы, раздела	Вопросы по
	Коллоквиум	или разделов дисциплины,	темам/разделам
		организованное как учебное	дисциплины
		занятие в виде собеседования	
		преподавателя с обучающими	
2.		Система стандартизированных	
	Тест	заданий, позволяющая	Фонд тестовых
		автоматизировать процедуру	заданий
		измерения уровня знаний и	
		умений обучающегося	

3. ПОКАЗАТЕЛИ И КРИТЕРИИ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ НА РАЗЛИЧНЫХ ЭТАПАХ ИХ ФОРМИРОВАНИЯ, ОПИСАНИЕ ШКАЛ ОЦЕНИВАНИЯ

Таблица 3

	y		освоения	Оценочное	
Планируемые результаты	неудовлетворит	удовлетворительно	хорошо	отлично	средство
освоения компетенции	ельно				
ОПК-1. Способен решать задачи про	офессиональной деят	гельности на основе испо	льзования теоретичест	ких и практических осно	в естественных и
технических наук, а также математиче	ского аппарата				
ОПК-1 _{ИОПК-1.4} Выбор базовых физичес			ной деятельности		
Знать: Базовые физические	Уровень знаний	Минимально	Уровень знаний в	Уровень знаний в	Коллоквиум,
законы для решения задач	ниже	допустимый	объеме,	объеме,	тесты
профессиональной деятельности;	минимальных	уровень знаний,	соответствующем	соответствующем	
	требований,	допущено много	программе	программе	
	имели	негрубых ошибок	подготовки,	подготовки, без	
	место грубые		допущено	ошибок.	
	ошибки		несколько		
			негрубых		
			ошибок		
Уметь: Выбирать базовые	При решении	Продемонстрированы	Продемонстриров	Продемонстрирован	Коллоквиум,
физические законы для решения	стандартных	основные	аны все основные	ы все основные	тесты
задач профессиональной	задач	умения, решены	умения, решены	умения, решены все	
деятельности;	не	типовые задачи с	все	основные задачи с	
	продемонстриро	негрубыми	основные задачи с	отдельными	
	ваны основные	ошибками,	негрубыми	несущественными	
	умения,	выполнены все	ошибками,	недочетами,	
	имели место	задания, но не в	выполнены все	выполнены все	
	грубые	полном объеме	задания в полном	задания в полном	
	ошибки		объеме, но	объеме	
			некоторые с		
			недочетами		

Владеть: Навыками выбирать	При решении	Имеется	Продемонстриров	Продемонстрирован	Коллоквиум,
базовые физические законы для	стандартных	минимальный набор	аны базовые	ы навыки при	тесты
решения задач профессиональной	задач	навыков для	навыки	решении	
деятельности	не	решения	при решении	нестандартных	
	продемонстриро	стандартных задач с	стандартных задач	задач без ошибок и	
	ваны базовые	некоторыми	c	недочетов	
	навыки,	недочетами	некоторыми		
	имели место		недочетами		
	грубые				
	ошибки				
ОПК-3 Применение ранее разработани	тту концепций метог	ии (апровитмов) с использ	ODDINAM MOTORINACION	свенений пла принатия ве	THAILIA D

ОПК-3. Применение ранее разработанных концепций, методик (алгоритмов) с использованием исторических сведений для принятия решения в профессиональной деятельности

профессиональноги					
ОПКЗ иопк-3.10. Использование теоретических основ строительства для принятия решения в профессиональной деятельности					
Знать Теоретические основы	Уровень знаний	Минимально	Уровень знаний в	Уровень знаний в	Коллоквиум,
строительства для принятия	ниже	допустимый	объеме,	объеме,	тесты
решения в профессиональной	минимальных	уровень знаний,	соответствующем	соответствующем	
деятельности;	требований,	допущено много	программе	программе	
	имели	негрубых ошибок	подготовки,	подготовки, без	
	место грубые		допущено	ошибок.	
	ошибки		несколько		
			негрубых		
			ошибок		
Уметь Использовать	При решении	Продемонстрированы	Продемонстриров	Продемонстрирован	Коллоквиум,
теоретические основы	стандартных	основные	аны все основные	ы все основные	тесты
строительства для принятия	задач	умения, решены	умения, решены	умения, решены все	
решения в профессиональной	не	типовые задачи с	все	основные задачи с	
деятельности;	продемонстриро	негрубыми	основные задачи с	отдельными	
	ваны основные	ошибками,	негрубыми	несущественными	
	умения,	выполнены все	ошибками,	недочетами,	
	имели место	задания, но не в	выполнены все	выполнены все	
	грубые	полном объеме	задания в полном	задания в полном	
	ошибки		объеме, но	объеме	
			некоторые с		

			недочетами		
Владеть Способностью использовать	При решении	Имеется	Продемонстриров	Продемонстрирован	Коллоквиум,
теоретические основы строительства	стандартных	минимальный набор	аны базовые	ы навыки при	тесты
для принятия решения в	задач	навыков для	навыки	решении	
профессиональной деятельности	не	решения	при решении	нестандартных	
	продемонстриро	стандартных задач с	стандартных задач	задач без ошибок и	
	ваны базовые	некоторыми	c	недочетов	
	навыки,	недочетами	некоторыми		
	имели место		недочетами		
	грубые				
	ошибки				

4. ПЕРЕЧЕНЬ КОНТРОЛЬНЫХ ЗАДАНИЙ И ИНЫХ МАТЕРИАЛОВ, НЕОБХОДИМЫХ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И ОПЫТА ДЕЯТЕЛЬНОСТИ

4.1. Типовые задания для текущего контроля успеваемости

4.1.1. Вопросы для коллоквиума

ОПК-1. Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата ИОПК-1.4. Выбор базовых физических законов для решения задач профессиональной деятельности

Знать:

- 1. Что такое сжимаемость жидкости?
- 2. Что не характеризует вязкость жидкости?
- 3. Уравнение Бернулли это
- 4. Основные параметры движения жидкости
- 5. Путевые потери напора это

Уметь:

- 1 Определить количество теплоты, отдаваемое или принимаемое поверхностью стенки при конвективном теплообмене;
- 2. Определить интенсивность конвективного теплообмена;
- 3. Определить удельный тепловой поток;
- 4. Определить местные сопротивления трубопровода;
- 5. Определить вид движения жидкости;

Владеть:

- 1. Как называется тело, поглощающее все падающее на него излучение?
- 2. Как называется способ переноса теплоты перемешивание, перемещение между собой частиц газа или жидкости?
- 3. Что происходит при увеличении температуры с вязкостью жилкости?
- 4. Что показывает число Рейнольдса?
- 5. Что является единицей измерения теплопроводности материалов?

- ОПК-3. Применение ранее разработанных концепций, методик (алгоритмов) с использованием исторических сведений для принятия решения в профессиональной деятельности.
- ИОПК-3.10. Использование теоретических основ строительства для принятия решения в профессиональной деятельности

Знать:

- 1. Определение потерь давления в трубах и на местных сопротивлениях. Формулы Дарси и Дарси-Вейсбаха.
- 2.Закон сопротивления при ламинарном течении в трубах.
- 3. Изменение скорости газа при движении в диффузорах и конфузорах.
- 4. Условия перехода значений скорости газа через скорость звука.
- 5.Сопло Лаваля и режимы его работы.

Уметь:

- 1. Определять коэффициенты теплового расширения и сжимаемости;
- 2. Определять динамический и кинематический коэффициенты вязкости;
- 3. Определение уровней жидкостей в сообщающихся сосудах, заполненных жидкостями с разной плотностью;
- 4. Определять силы давления, действующие на криволинейную поверхность и на тела, погруженные втяжелую несжимаемую жидкость; 5.Определять вертикальные и горизонтальные составляющие сил, действующих на тела, погруженные втяжелую несжимаемую жидкость;

Владеть:

- 1.Гидравлический пресс.
- 2. Равновесие жидкости в присутствии массовых сил. Основное дифференциальное уравнение гидростатики.
- 3. Условия возможности равновесия неизотермической жидкости в поле силы тяжести. Естественная (свободная) конвекция.
- 4. Сообщающиеся сосуды. Жидкостные манометры и микроманометры.
- 5. Распределение давления в тяжелом сжимаемом газе. Барометрическая формула.

4.1.2. Темы контрольных работ

Контрольные работы не предусмотрены в РПД.

4.1.3. Примерные темы курсовых работ

Курсовые работы не предусмотрены в РПД.

4.1.3. Тесты

ОПК-1. Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ

естественных и технических наук, а также математического аппарата ИОПК-1.4. Выбор базовых физических законов для решения задач профессиональной деятельности

1. Что называют гидравликой?

- 1) науку, которая изучает равновесие и движение жидкостей;
- 2) науку, которая изучает движение водных потоков;
- 3) науку, которая изучает положение жидкостей в пространстве;
- 4) науку, которая изучает взаимодействие водных потоков.

2. Что такое реальная жидкость?

- 1) с присутствующим внутренним трением.
- 2) подвижная;
- 3) пригодная к применению;
- 4)вязкая и сжимаемая;
- 5) способная к сжатию;

3. Что такое идеальная жидкость?

- 1) с присутствующим внутренним трением.
- 2) абсолютно подвижная жидкость;
- 3) вязкая;
- 4) способная к сжатию.

4. Силы, действующие на жидкость в покое

- 1) инерциальная, поверхностная;
- 2) поверхностная, внутренняя;
- 3) тяготения, давления;
- 4) массовая, поверхностная.

5. Что называется воздействием давления на жидкость?

- 1) неподвижное состояние;
- 2) процесс течения;
- 3) видоизменение формы;
- 4) поверхностные, массовые.

6. Масса жидкости, заключённая в единице объёма- что это?

- 1) плотность;
- 2) удельная плотность;
- 3) Bec;
- 4) удельный вес.

7. Вес жидкости в единице объёма что это?

- 1) плотность;
- 2) удельный вес;
- 3) Bec;

- 4) удельная плотность.
- 8. При увеличении температуры что происходит с удельным весом жидкости?
- 1) возрастание;
- 2) уменьшение;
- 3) возрастание с последующим уменьшением;
- 4) никаких изменений.
- 9. Что такое сжимаемость жидкости?
- 1) видоизменение формы в результате действия давления;
- +2) изменение объёма в результате действия давления;
- 3) сопротивление воздействию давления с видоизменением формы;
- 4) изменение объема в результате изменения температуры.

10. Каким параметром характеризуется сжимаемость жидкости?

- 1)Коэффициент объёмного сжатия;
- 2) коэффициент джоуля;
- 3) температурный коэффициент;
- 4) коэффициент удельного сжатия.

11. Что не характеризует вязкость жидкости?

- 1) статический коэффициент вязкости;
- 2) кинематический вязкостный коэффициент;
- 3) динамический коэффициент вязкости;
- 4) градус Энглера.

12.При увеличении температуры вязкость жидкости

- 1) увеличивается;
- 2) изменений не происходит;
- 3) уменьшается;
- 4) возрастание с последующим уменьшением.

13. Гидравлику подразделяют на следующие разделы

- 1) гидростатику, гидромеханику;
- 2) гидромеханику, гидродинамику;
- 3) гидрологию, гидромеханику;
- 4) гидростатику, гидродинамику.

14. Смысл одного из свойств гидростатического давления

- 1) в отсутствии изменений, независимо от направления;
- 2) в постоянстве и перпендикулярном расположению относительно стенок резервуара;
- 3) в изменении, в зависимости от месторасположения;
- 4) в отсутствии изменений в горизонтальной плоскости.

15. С помощью основного уравнения гидростатики какое давление определяется

- 1) которое действует на свободную поверхность;
- 2) на дне резервуара;
- 3) которое действует на объект, помещённый в жидкость;
- 4) в каждой точке рассматриваемого объёма.

16. Что называют водоизмещением?

- 1) вес жидкости, которая была взята в объёме погружённой части судна;
- 2) наибольший объём жидкости, которую вытесняет плавающее судно;
- 3) вес жидкости, которая была взята в объёме судна;
- 4) объём жидкости, которую вытесняет плавающее судно.

17. Что это- количество жидкости, протекающей за единицу времени через живое сечение —

- 1) расход потока;
- 2) поток жидкости;
- 3) напор потока;
- 4) скорость течения.

18. Что это- отношение расхода жидкости к площади живого сечения

- 1) средний расход текущего потока;
- 2) наибольшая быстрота течения;
- 3) средняя скорость потока;
- 4) наименьший расход течения.

19. Укажите вид движения жидкости

- 1) неустановившееся;
- 2) напорное;
- 3) произвольное;
- 4) безнапорное.

20. Что называют гидравлическим сопротивлением?

- 1) сопротивление жидкости к деформации формы собственного русла;
- 2) сопротивление, которое препятствует прохождению жидкости;
- 3) сопротивление трубопровода, сопровождаемое потерями напора жидкости;
- 4). сопротивление трубопровода, сопровождаемое потерями скорости движения жидкости.

21.Вопросы, изучаемые в разделе технической термодинамики

- 1) превращение тепловой энергии в механическую;
- 2) теория тепловых двигателей;
- 3) законы превращения тепловой энергии в процессы распространения теплоты;
- 4)свойства тепловой энергии.

22. Термодинамическая система бывает

- 1) закрытая;
- 2)неизолированная;

5) термоизолированная;
+4)гетерогенная.
23.Виды состояний термодинамической системы
1)нестационарное;
2)гомогенное;
3)равновесное;
4)изолированное.
24.Способы передачи энергии
1) через потенциальную энергию;
2)с помощью увеличения температуры;
3)с помощью увеличения давления;
4) с помощью работы.
25.Термодинамические параметры бывают
1)равновесными
2)обратимыми;
3)неравновесными;
4)интенсивными.
26.Основные термодинамические параметры это
1)абсолютная температура;
2)теплоемкость;
3)энтропия;
4) энергия.
27. Функции состояния
1)давление;
2)температура;
3) энтальпия;

28. Закон Авогадро утверждает, что все идеальные газы при одинаковых р и Т в равных объёмах содержат одинаковые число:
1) атомов;
2) молекул;
3) частиц;
4) молей.
29. Каким уравнением описывается связь между изобарной и изохорной теплоемкостями?
1) уравнением Клайперона;
2) уравнением Менделеева – Клайперона;
3) уравнением Дальтона;
4) уравнением Майера.
30. Теплоёмкость, определенная при постоянном давлении называется:
1) изохорной;
2) изобарной;
3) мольная;
4) массовая.
31.Энтропия определяется
1) начальным состоянием тела;
2) путем протекания процесса;
3) конечным состоянием тела;
4) начальным и конечным состоянием тела.
32.Термодинамические процессы бывают
1)изобатный;
2)адиабарный;

3)политермический;
4)изобарный.
33. Процесс получения водяного пара за счет молекул, вылетающих с поверхности воды, называется:
1) кипением;
2) испарением;
3) конденсацией;
4) дистилляцией.
34. Массовая доля водяного пара в смеси характеризуется:
1) энтальпией;
2) удельным объемом пара в смеси;
3) паросодержанием;
4) влагосодержанием.
35. В момент полного испарения жидкости пар называется:
1) влажный ненасыщенный пар;
2) сухой насыщенный пар;
3) перегретый пар;
4) сухой ненасыщенный пар.
36. Процесс передачи тепла от горячего теплоносителя к холодному через стенку, разделяющую теплоносители называется:
1) тепловым излучением;
2) теплоотдачей;
3) теплопроводностью;
4) теплопередачей.

течением времени, то температурное поле называется:
1) однородное;
2) равновесное;
3) стационарное;
4) объемное.
38. Величина равная количеству теплоты, проходящей через стенку площадью 1m^2 за время 1с называется:
1) термическим сопротивлением стенки;
2) коэффициентом теплопередачи;
3) плотностью теплового потока;
4) мощностью теплового потока.
39. Количество теплоты, отдаваемое или принимаемое поверхностью стенки площадью F за время t=1c называется:
1) плотностью теплового потока;
2) тепловым потоком;
3) термическим сопротивлением;
4) коэффициентом теплопередачи.
40. Количество теплоты, отдаваемое или принимаемое поверхностью стенки площадью F за время т называется:
1) плотностью теплового потока;
2) тепловым потоком;
3) количеством теплоты, прошедшим через стенку;
4) термическим сопротивлением стенки.
ОПК-3. Применение ранее разработанных концепций, методик (алгоритмов) с использованием исторических сведений для принятия решения в профессиональной деятельности.

37. Если температура во всех точках пространства не изменяется с

ИОПК-3.10. Использование теоретических основ строительства для принятия решения в профессиональной деятельности

1. Каким может быть гидравлическое сопротивление?

- 1) местным, линейным;
- 2) линейным, полным;
- 3) местным, общим;
- 4) нелинейным, линейным.

2. Чем определяется ламинарный режим движения жидкости?

- 1) беспорядочным перемещением частиц жидкости исключительно рядом со стенками трубопровода;
- 2) беспорядочным перемещением частиц жидкости внутри трубопровода;
- 3) послойным перемещением частиц жидкости исключительно рядом со стенками трубопровода;
- 4) сохранение жидкости определённого строя собственных частиц.

3. Чем характерен турбулентный режим движения жидкости?

- 1) послойным движением частиц жидкости;
- 2) беспорядочным и одновременно послойным движением частиц жидкости;
- 3) бессистемным движением частиц жидкости внутри трубопровода;
- 4) бессистемным движением частиц жидкости исключительно в центральной части трубопровода.

4.Основное уравнение гидростатики определяет давление, состоящее из

- 1) разности между абсолютным и атмосферным давлением;
- 2) суммы между абсолютным давлением и весовым;
- 3) разности между атмосферным давлением и абсолютным;
- 4) суммы между атмосферным давлением и весовым.

5.Закон Архимеда-это зависимость следующих параметров

- 1) давления, плотности, объема;
- 2) давления, удельного веса, объема;
- 3) давления, плотности, ускорения свободного падения, объема;
- 4) силы давления, удельного веса, объема.

6. Уравнение Бернулли это

- 1) уравнение баланса расхода;
- 2) уравнение баланса энергии;
- 3) уравнение неразрывности потока;
- 4) уравнение потерь энергии.

7. Местные сопротивления это

- 1)изменения геометрии потока;
- 2) участки потерь напора на преодоление сил трения;
- 3) участки потерь энергии;
- 4) участки локальных изменений геометрии потока.

8.Путевые потери напора это

1) определяющие диаметр труб;

- 2)определяющие места изменения диаметра труб;
- 3) потери на преодоление сил энерции;
- 4) потери на преодоление сил трения.

9. Число Рейнольдса показывает

- 1) режим движения жидкости;
- 2) смену режима жидкости;
- 3) скорость движения жидкости;
- 4) вид движения жидкости.

10. Режимы течения жидкости

- 1) равномерный;
- 2) ускоренный;
- 3) замедленный;
- 4)турбулентный

11.Основные параметры движения жидкости

- 1) давление и скорость;
- 2)скорость и напор;
- 3) давление и местная скорость;
- 4)живое сечение и расход.

12. Теплопроводностью называют процесс:

- 1) передача теплоты в газовых средах;
- 2) передача теплоты в стационарных температурных полях;
- 3) молекулярного переноса теплоты в сплошной среде, обусловленный наличием градиента температуры;
- 4) переноса потенциальной энергии молекул.

13. Единицей измерения теплопроводности материалов является:

$$\frac{Bm}{M^2 \cdot K};$$

$$\frac{Bm}{M^2 \cdot K^4}$$
:

$$\frac{Bm}{M \cdot K}$$
;

$$\frac{Bm}{u^2}$$

4)
$$\overline{M^2}$$
.

14. Термическое сопротивление теплопроводности однослойной плоской стенки определяется:

$$R = \frac{1}{\alpha}$$

$$R = \sum_{1}^{n} \frac{\delta_{i}}{\lambda_{i}}$$

$$R = \frac{1}{\alpha} + \frac{\delta}{\lambda}$$

$$R = \frac{\delta}{\lambda}$$

15. Термическое сопротивление теплопередачи многослойной стенки определяется по формуле:

$$R_{non} = \frac{1}{\alpha_1} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \dots + \frac{\delta_n}{\lambda_n} + \frac{1}{\alpha_2},$$

$$R_{oбщ} = \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \frac{\delta_3}{\lambda_3} + ... \frac{\delta_n}{\lambda_n}$$

$$R = \frac{\Phi_{omp}}{\Phi};$$

$$_{4)} R = \frac{1}{k}.$$

16. Конвективным теплообменом называют процесс переноса теплоты:

- 1) одновременный конвекцией и теплопроводностью;
- 2) одновременный конвекцией и излучением;
- 3) последовательный конвекцией и теплопроводностью;

4) последовательный конвекцией и излучением.

17. Интенсивность конвективного теплообмена оценивается:

- 1) коэффициентом теплопередачи;
- 2) коэффициентом поглощения;
- 3) коэффициентом интенсивности теплообмена;
- 4) коэффициентом теплоотдачи.

18. Плотность теплового потока в стационарном поле для конвективного теплообмена находятся из выражения:

$$\overline{q}_{K} = \frac{\lambda_{cpa\partial}}{\delta} \cdot T;$$

$$\bar{q}_K = \alpha \cdot [T_c - T_{\mathcal{H}}]$$

$$q_T = \alpha \cdot \Delta_{\text{spad}} \cdot T$$

$$q_K = \alpha \cdot F \cdot (T_c + T_{\mathcal{H}})$$

19. Количество теплоты, отдаваемое или принимаемое поверхностью стенки, при конвективном теплообмене определяется выражением:

$$Q = \frac{t_1 - t_2}{R_{non}} \cdot F \cdot \tau$$

$$Q = \frac{\lambda}{\delta} \cdot (t_1 - t_2) \cdot F \cdot \tau;$$

3)
$$Q = \alpha \cdot (t_{cm} - t_{sc}) \cdot F \cdot \tau$$

4)
$$Q = k_{non} \cdot (t_1 - t_2) \cdot F \cdot \tau$$
.

20. Термическое сопротивление конвективному теплообмену определяется по формуле:

$$R = \frac{1}{k_{non}}$$

$$_{2)} R = \frac{\delta}{\lambda};$$

$$R = \frac{1}{\alpha}$$

$$R = \frac{1}{k_{o 6 u y}}.$$

21. Коэффициент излучения энергии с поверхности тела характеризует:

- 1) интенсивность теплоотдачи;
- 2) интенсивность нагрева тела;
- 3) интенсивность поглощения энергии;
- 4) интенсивность излучения энергии.

22. Для серого тела коэффициент излучения определяется выражением:

$$E = C_0 \cdot \varepsilon \cdot (\frac{T}{100})^4;$$

2)
$$C = C_0 \cdot \varepsilon$$
;

$$_{3)}\mathcal{A}=\frac{\boldsymbol{\Phi }_{np}}{\boldsymbol{\Phi }};$$

$$A = \frac{\Phi_{nozn}}{\Phi}$$

23. Коэффициент отражения определяется выражением:

$$\ddot{A} = \frac{\Phi_{np}}{\Phi};$$

$$R = \frac{\Phi_{omp}}{\Phi};$$

$$A = \frac{\Phi_{nozn}}{\Phi};$$

$$_{4)} R = \frac{1}{\alpha}.$$

24. Если коэффициент проницаемости тела равен 1, то тело называется:

1) абсолютно белым;

2) серым;

3) абсолютно прозрачным;

4) абсолютно черным.

25. Если коэффициент отражения равен 1, то тело является:

1) абсолютно белым;

2) абсолютно черным;

3) абсолютно прозрачным;

4) серым.

26. Если коэффициент поглощения равен 1, то тело является:

1) абсолютно белым;

2) абсолютно черным;

3) абсолютно прозрачным;

4) серым.

27. Закон Стефана Больцмана при лучистом теплообмене представлен выражением:

21

 $I = \frac{dE}{d\lambda};$

2) $E_{\Pi A \mathcal{I}} = E_A + E_R + E_{\mathcal{I}}$;

 $E = \varepsilon \cdot c_0 \cdot \left[\frac{T}{100} \right]^4;$

4) $E_{3\Phi} = E + R + E_{IIAA}$.

28. Критерий Нуссельта является:

1) критерием гидродинамического подобие;

3) критерием диффузионного подобия;
4) критерием нагрева тела.
29. Критерий Нуссельта характеризует:
1) физические свойства подвижной среды;
2) интенсивность теплоотдачи;
3) режим вынужденного движения;
4) подъемную силу при естественной конвекции.
30. В вакууме процесс переноса теплоты осуществляется:
1) теплопроводностью;
2) конвекцией;
3) тепловым излучением;
4) теплопередачей.
31.Соответствие между теплопроводностью и законом
 Закон Стефана-Больцмана; Закон Фурье; Закон Кирхгофа; Закон Ньютона – Рихмана.
32.Соответствие между конвективным теплообменом и законом
1)Закон Стефана-Больцмана;
2)Закон Фурье;
3)Закон Кирхгофа;
4)Закон Ньютона – Рихмана.
33. Способ переноса теплоты - перемешивание, перемещение между собой частиц газа или жидкости - это
1)Теплоизлучение

2) критерием теплового подобия;

- 2)конвекция;
- 3)теплопроводность;
- 4)теплоотдача.

34.Соответствие между критерием Нуссельта и характеризуемыми свойствами

- 1) интенсивность теплоотдачи;
- 2) подъемная сила при естественной конвекции;
- 3) режим вынужденного движения;
- 4) физические свойства подвижной среды.

35.Передача теплоты при непосредственном соприкосновении тел или внутри твердого тела, обусловленная тепловым движением микрочастиц, называется:

- а) теплоотдачей;
- б) теплопроводностью;
- в) теплопередачей;
- г) температуропроводностью;
- д) тепломассообменом.

36.Существуют следующие простые способы передачи теплоты:

- а) конвекция, теплопередача, лучистый теплообмен;
- б)теплопроводность, конвективный теплообмен, излучение;
 - в) радиация, конвекция, теплопроводность;
- г) теплоотдача, конвекция, лучистый теплообмен.

37.Температурное поле – это:

- а) количество теплоты, передаваемое в единицу времени через единицу поверхности;
- б) геометрическое место точек, имеющих в данный момент времени одинаковую температуру;
- в) совокупность значений температур во всех точках рассматриваемого тела в данный момент времени;
- г) тепловая энергия, передаваемая от одного тела к другому в течение какого-то времени.

38. Температурный градиент – это вектор, направленный:

- а) перпендикулярно нормали к изотермической поверхности в сторону уменьшения температуры;
- б)параллельно к изотермической поверхности в сторону возрастания температуры;
- в) по нормали к изотермической поверхности в сторону возрастания температуры;
- г) по нормали к изотермической поверхности в сторону убывания температуры.

39. Если температурное поле в твердой стенке изменяется во времени, то процесс теплопроводности будет:

- а)постоянным;
- б) нестабильным;
- в) непостоянным;
- г) нестационарным.

40. Термическое сопротивление плоской стенки представляет собой:

- а) количество теплоты, выделяемой в единице объема в единицу времени;
- б) падение температуры при прохождении через стенку удельного теплового потока, равного единице;
- в) количество теплоты, проходящее в единицу времени через единицу поверхности стенки;
- г) разность температур между наружной и внутренней поверхностями стенки.

4.2 . Типовые задания для промежуточной аттестации

4.2.1. Вопросы к зачету

Вопросы для оценки компетенции

ОПК-1. Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата ИОПК-1.4. Выбор базовых физических законов для решения задач профессиональной деятельности

Знать:

- 1. Закон Архимеда-это зависимость следующих параметров
- 2. Способы передачи энергии
- 3. Если температура во всех точках пространства не изменяется с течением времени, то температурное поле называется:
- 4. Процесс получения водяного пара за счет молекул, вылетающих с поверхности воды, называется:
- 5. Теплопроводностью называют процесс:

Уметь:

- 1. Определять потери давления при внезапном расширении и сужении потока;
- 2.Определять потери давления на местных сопротивлениях (задвижка, клапан, кран);
- 3. Решать основные задачи расчета трубопроводных систем;
- 4.Выполнить расчет потерь давления при последовательном соединении простых трубопроводов;
- 5. Выполнить расчет потерь давления при параллельном соединении простых трубопроводов.

Владеть:

- 1. Основными принципами описания потоков жидкостей и газов. Поля давления, температуры и плотности. Физическим смыслом их градиентов. Изотермы, изобары, изохоры.
- 2.Полем скоростей. Линией трубки тока. Объемным и массовым расходом жидкости. Связью между расходом исредней скоростью течения жидкости.
- 4.Силы давления и их физическая природа. Напряжение сил давления (давление).
- 5. Равновесие жидкости в отсутствии массовых сил. Закон Паскаля.
 - ОПК-3. Применение ранее разработанных концепций, методик (алгоритмов) с использованием исторических сведений для принятия решения в профессиональной деятельности.
- ИОПК-3.10. Использование теоретических основ строительства для принятия решения в профессиональной деятельности

Знать:

1. Гидромеханическое представление о жидкостях как сплошной и текучей среде. Фундаментальные свойстважидкостей и газов -

сплошность и текучесть.

- 2.Плотность жидкостей и газов и ее зависимость от температуры и давления (уравнения состояния) для идеальных газов и капельных жидкостей.
- 3. Вязкость жидкостей. Физическая природа сил вязкого трения. Вязкие напряжения. Закон вязкого трения Ньютона.
- 4. Классификация сил, действующих в жидкости. Силы массовые (объемные) и поверхностные. Напряжения массовых и поверхностных сил.
- 5.Плавание тел и его устойчивость. Особенности плавания тел, не полностью погруженных в жидкость.

Уметь:

- 1. Определять потери давления при внезапном расширении и сужении потока;
- 2.Определять потери давления на местных сопротивлениях (задвижка, клапан, кран);
- 3. Решать основные задачи расчета трубопроводных систем;
- 4.Выполнить расчет потерь давления при последовательном соединении простых трубопроводов;
- 5. Выполнить расчет потерь давления при параллельном соединении простых трубопроводов.

Владеть:

- 1. Основными принципами описания потоков жидкостей и газов. Поля давления, температуры и плотности. Физическим смыслом их градиентов. Изотермы, изобары, изохоры.
- 2.Полем скоростей. Линией трубки тока. Объемным и массовым расходом жидкости. Связью между расходом исредней скоростью течения жидкости.
- 4.Силы давления и их физическая природа. Напряжение сил давления (давление).
- 5. Равновесие жидкости в отсутствии массовых сил. Закон Паскаля.

4.2.2. Вопросы к экзамену

Экзамен не предусмотрен учебным планом.

5. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ И НАВЫКОВ И ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

<u>Критерии оценивания знаний обучающихся при проведении</u> коллоквиума:

- Отметка «отлично» обучающийся четко выражает свою точку зрения по рассматриваемым вопросам, приводя соответствующие примеры.
- Отметка «хорошо» обучающийся допускает отдельные погрешности в ответе.
- Отметка «удовлетворительно» обучающийся обнаруживает пробелы в знаниях основного учебного и нормативного материала.
- Отметка «неудовлетворительно» обучающийся обнаруживает существенные пробелы в знаниях основных положений дисциплины, неумение с помощью преподавателя получить правильное решение конкретной практической задачи.

<u>Критерии оценивания знаний обучающихся при проведении</u> тестирования:

Результат тестирования оценивается по процентной шкале оценки. Каждому обучающемуся предлагается комплект тестовых заданий из 25 вопросов:

- •Отметка «отлично» 25-22 правильных ответов.
- •Отметка «хорошо» 21-18 правильных ответов.
- •Отметка «удовлетворительно» 17-13 правильных ответов.
- •Отметка «неудовлетворительно» менее 13 правильных ответов.

Критерии знаний при проведении зачета:

- Оценка «зачтено» должна соответствовать параметрам любой из положительных оценок («отлично», «хорошо», «удовлетворительно»).
- Оценка «не зачтено» должна соответствовать параметрам оценки «неудовлетворительно».

6. ДОСТУПНОСТЬ И КАЧЕСТВО ОБРАЗОВАНИЯ ДЛЯ ЛИЦ С ОВЗ

При необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на зачете.

При проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья могут использоваться собственные технические средства.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:	– в печатной форме увеличенным шрифтом,– в форме электронного документа.
Для лиц с нарушениями слуха:	– в печатной форме,– в форме электронного документа.
Для лиц с нарушениями	– в печатной форме, аппарата:
опорно-двигательного аппарата	– в форме электронного документа.

При проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине обеспечивает выполнение следующих дополнительных требований в зависимости от индивидуальных особенностей, обучающихся:

- а) инструкция по порядку проведения процедуры оценивания предоставляется в доступной форме (устно, в письменной форме);
- б) доступная форма предоставления заданий оценочных средств (в печатной форме, в печатной форме увеличенным шрифтом, в форме электронного документа, задания зачитываются преподавателем);
- в) доступная форма предоставления ответов на задания (письменно на бумаге, набор ответов на компьютере, устно).

При необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Проведение процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья допускается с использованием дистанционных образовательных технологий.