МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный аграрный университет»

Кафедра «Электроэнергетика и электрооборудование»

УТВЕРЖДАЮ

Декан факультета технических систем, сервиса и энергетики

> _B.A. Ружьев 2019 г.

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ «ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА»

основной профессиональной образовательной программы

Направление подготовки бакалавра 20.03.01 Техносферная безопасность

Тип образовательной программы Академический бакалавр

Формы обучения очная, очно-заочная, заочная

Санкт-Петербург 2019

Автор(ы)

зав. кафедрой, доцент (должность)

Sunfor

А.П. Епифанов (Фамилия И.О.)

Рабочая программа дисциплины «Электротехника и электроника» рассмотрена и одобрена на заседании кафедры электроэнергетики и электрооборудования эксплуатация транспортно-технологических машинот 21.04.2019г., протокол № 8.

Заведующий кафедрой

<u>Н.В. Васильев</u> (Фамилия И.О.)

СОГЛАСОВАНО

Зав. библиотекой

Noppless

Позубенко Н.А.

Начальник отдела информационных технологий

поличен

Чижиков А.С.

СОДЕРЖАНИЕ

c.
1 Цели освоения дисциплины
2 Перечень планируемых результатов обучения по дисциплине,
соотнесенных с планируемыми результатами освоения образовательной
программы
3 Место дисциплины в структуре основной профессиональной
образовательной программы
4 Объем дисциплины в зачетных единицах с указанием количества
академических часов, выделенных на контактную работу обучающихся с
преподавателем (по видам учебных занятий) и на самостоятельную работу
обучающихся
5 Содержание дисциплины, структурируемое по темам (разделам) с
указанием отведенных на них количества академических часов и видов учебных
занятий б
6 Перечень учебно-методического обеспечения для самостоятельной
работы обучающихся по дисциплине
7 Фонд оценочных средств для проведения промежуточной аттестации
обучающихся по дисциплине
8 Перечень основной и дополнительной учебной литературы, не-
обходимой для освоения дисциплины
9 Перечень ресурсов информационно-телекоммуникационной сети
«Интернет», необходимых для освоения дисциплины
10 Методические указания для обучающихся по освоению дисциплины
9 11 T
11 Перечень информационных технологий, используемых при
осуществлении образовательного процесса по дисциплине, включая перечень
программного обеспечения и информационных справочных систем 10
12 Описание материально-технической базы, необходимой для
осуществления образовательного процесса по дисциплине

1 Цели освоения дисциплины

Цели освоения дисциплины «Электротехника и электроника» заключаются в развитии компетенций у обучающихся, направленных на формирование у обучающихся основополагающих представлений о теории электрических цепей для изучения комплекса специальных электротехнических дисциплин; развитие научного мышления и создание фундаментальной базы для успешной профессиональной деятельности.

2 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Дисциплина *«Электротехника и электроника»* участвует в формировании следующих компетенций:

общекультурные компетенции:

- 1) способностью работать самостоятельно (ОК-8);
- 2) способностью к познавательной деятельности (ОК-10).

общепрофессиональные компетенции:

1) готовностью к выполнению профессиональных функций при работе в коллективе (ОПК-5).

профессиональные компетенции:

1) способностью принимать участие в инженерных разработках среднего уровня сложности в составе коллектива (ПК-1).

В результате освоения компетенции (ОК-8) обучающийся должен:

знать: содержание процессов самоорганизации и самообразования, их особенностей и технологий реализации, исходя из целей совершенствования профессиональной деятельности

уметь: самостоятельно строить процесс овладения информацией, отобранной и структурированной для выполнения профессиональной деятельности.

владеть: приемами саморегуляции эмоциональных и функциональных состояний при выполнении профессиональной деятельности.

В результате освоения компетенции (**ОК-10**) обучающийся должен: *знать:* методы решения задач различного типа.

уметь: выбирать подходящие методы решения различных задач; комбинировать различные методы в зависимости от ситуации; комбинировать различные методы в зависимости от ситуации.

владеть: навыками принятия решения в различных ситуациях.

В результате освоения компетенции (ОПК-5) обучающийся должен:

знать: этические нормы и основные модели организационного поведения.

уметь: устанавливать конструктивные отношения в коллективе, работать в команде на общий результат.

владеть: технологиями эффективной коммуникации.

В результате освоения компетенции (ПК-1) обучающийся должен: знать:

основные инженерные процессы в учебной деятельности; *уметь*: работать в команде на общий результат;

владеть: технологиями эффективной коммуникации, способностью применять основные методы решения инженерных задач.

3 Место дисциплины в структуре основной профессиональной образовательной программы

- 3.1 Для изучения данной учебной дисциплины необходимы следующие знания, умения и навыки, формируемые **предшествующими** дисциплинами:
 -) Математика:

Знания: фундаментальных основ высшей математики, включая алгебру, геометрию, математический анализ, теорию вероятностей и основы математической статистики.

Умения: самостоятельно использовать математический аппарат, содержащийся в литературе по строительным наукам, расширять свои математические познания.

Навыки: первичных и основных методов решения математических задач общеинженерных и специальных дисциплин.

-) Физика:

Знания:

- современных представлений о природе основных физических явлений, о причинах их возникновения и взаимосвязи;
- основных физических законов, лежащих в основе современной техники и технологии;
- основных физических величин и физических констант, их определения, смысла и единиц измерения;
- связи физики с другими науками, роли физических закономерностей. Умения:
 - формулировать основные физические законы;
 - применять для описания явлений известные физические модели;
- применять знания о физических свойствах объектов и явлений в практической деятельности;
 - использовать законы физики для решения прикладных задач;
 - проводить физический эксперимент;
 - анализировать результаты эксперимента.

Навыки:

- описания основных физических явлений;
- решения типовых физических задач;
- обработки и интерпретации результатов измерений.
- 3.2 Перечень **последующих** учебных дисциплин, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной:
 - Государственная итоговая аттестация.

4 Объем дисциплины в зачетных единицах с указанием количества

академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов.

Объем дисциплины *очная форма обучения*

Виды учебной деятельности	5 семестр	Всего, час
Общая трудоемкость	108	108
Контактная работа обучающихся с преподавателем, в т. ч.	54	54
Занятия лекционного типа	18	18
Занятия семинарского типа	36	36
Самостоятельная работа обучающихся	54	54
Форма промежуточной аттестации	зачет	

заочная форма обучения

Виды учебной деятельности	3 курс	Всего, час
Общая трудоемкость	108	108
Контактная работа обучающихся с преподавателем, в т. ч.	14	14
Занятия лекционного типа	4	4
Занятия семинарского типа	10	10
Самостоятельная работа обучающихся	94	94
Форма промежуточной аттестации	зачет	зачет

очно-заочная форма обучения

Виды учебной деятельности	5 курс	Всего, час
Общая трудоемкость	108	108
Контактная работа обучающихся с преподавателем, в т. ч.	36	36
Занятия лекционного типа	12	12
Занятия семинарского типа	22	22
Самостоятельная работа обучающихся	72	72
Форма промежуточной аттестации	зачет	зачет

5 Содержание дисциплины, структурированное по темам (разделам) с указанием отведенных на них количества академических часов и видов учебных занятий

Содержание дисциплины

$N_{\underline{0}}$			Вид			
раз	Название	Содержание раздела	учебной	Количе	ество	часов
де	раздела (темы)		работы	ОФО	ЗФО	ОЗФ
1	Линейные	Введение. Основные понятия и определения.	Л	4	1	3
	электрические	Напряжение на участке эл. цепи.				
		Потенциальная диаграмма. Закон Ома. Закон	П3	8	3	5,5
	постоянного	Кирхгофа. Режимы работы эл. цепей.				
	тока	Энергетический баланс.	CP	12	24	18
		Расчёт электрических цепейтс одним				
		источником ЭДС методом эквивалентных				
		преобразований.				
		Методы расчёта эл. цепей с несколькими				
		источниками ЭДС: метод двух законов				
		Кирхгофа; метод контурных токов. Метод узловых потенциалов. Метод				
		наложения. Активный и пассивный				
		двухполюсники. Метод эквивалентного				
		генератора.				
2		Периодические переменные ЭДС,	Л	4	1	3
-	электрические			•	•	
		электромагнитной индукции. Индуктивность.	ПЗ	10	3	5,5
		Источник синусоидальной ЭДС.				
	о го тока	Волновые диаграммы токов и напряжений.	CP	12	24	18
		Действующие и средние значения синс. Токов				
		и напряжений. Изображение				
		синусоидальных токов и напряжений				
		вращающимися векторами.				
		Электрические цепи с активным				
		сопротивлением. Поверхностный эффект.				
		Электр. цепь с индуктивностью. Электр. цепь с				
		ёмкостью.				
		Электр. цепь с последовательным				
		соединением R, L, C. Активная, реактивная и полная мощность. Коэффициент мощности.				
		полная мощность. коэффициент мощности. Резонанс напряжений.				
		Эквивалентные схемы пассивных				
		двухполюсников переменного тока.				
		Электрическая цепь с параллельным				
		соединением приёмников.				
		Резонанс токов. Компенсация сдвига фаз.				
		Символический метод расчёта эл. цепей синус.				
		тока. Общие сведения о комплексных числах.				
		Изображение синусоидальных напряжений и				
		токов с помощью комплексных чисел. Закон				
		Ома в символической форме. Законы				
		Кирхгофа в символической форме.				
		Комплексное сопротивление и комплексная				
		проводимость.				
		Определение мощности символическим				
		методом. Применение методов расчёта эл. цепей		1		

3	Трёхфазные	Понятие о многофазных источниках питания и о	Л	4	1	3
	электрические	многофазных цепях. Основные схемы				
		соединения трёхфазных цепей.	П3	8	3	5,5
	Электроснаб-	Уравновешенные и неуравновешенные				
		многофазной системы. Симметричный	CP	14	24	
	Эл. машины,	режим трёхфазной цепи при соединении				18
		приёмника звездой.				
	безопасность	Несимметричный режим трёхфазной цепи при				
		соединении приёмника звездой: с				
		нулевым проводом, сопротивление которого				
		Zn=0; с нулевым проводом, сопротивление				
		которого Zn'0; без нулевого провода; обрыв				
		фазы приёмника без нулевого провода.				
		Кроткое замыкание фазы приёмника без				
		нулевого провода. Эл. цепь при соединении				
		трёхфазного приёмника треугольником:				
		симметричный режим; несимметричный				
		режим.				
		Пульсирующие и вращающиеся магнитные				
		поля. Принцип работы трёхфазного				
		асинхронного электродвигателя.				
4	Электроника		Л	6	1	3
			П3	10	1	
		Основные понятия и величины. Нелинейные	CP	16		5,5
		элементы. Основные характеристики			22	
		полупроводниковых материалов. Методики				18
		расчета.				

6 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

1) Косоухов, Ф.Д. Конспект лекций по теоретическим основам электротехники: 1, 2, 3 части. - СПб: СПбГАУ, 2007.

7 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине представлен в приложении к рабочей программе по дисциплине «Электротехника и электроника».

8 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная учебная литература:

1 Теоретические основы электротехники. Нелинейные электрические цепи. Электромагнитное поле: учеб. пособие для вузов / Г. И. Атабеков [и др.]; под ред. Г. И. Атабекова. - Изд. 6-е, стер. - СПб. [и др.]: Лань, 2010. - 431 с. - (Учебники для вузов. Специальная литература). - Библиогр.: с. 421. - ISBN 9785-8114-0803-0: 599-94, 15 экз.

Дополнительная учебная литература:

1 Котиков, Ю. Г. Транспортная энергетика: учеб. пособие для вузов / Ю. Г. Котиков, В. Н. Ложкин; под ред. Ю. Г. Котикова. - М.: Академия, 2006. - 272 с. - (Высшее профессиональное образование. Транспорт). - Библиогр.:с. 268-269. - ISBN 5-7695-2287-9:260-00,12 экз.

9 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1) Электронный каталог задач с решениями по электротехнике, теории линейных электрических цепей, основам теории цепей, теоретическим основам электротехники и др.: база содержит сведения о методах, алгоритмах, примерах решения [сайт]. Москва, 2018. Режим доступа: http://rgr-toe.ru (дата обращения 14.05.2018).
- 2) Университетская библиотека On-line [Электронный ресурс], М.: Издательство «Директ-Медиа», 2001-2018. Режим доступа: http://www.biblioclub.ru. Загл. с экрана (дата обращения 14.05.2018).
- 3) Электронно-библиотечная система Издательство «Лань» [Электронный ресурс], СПб.: Издательство Лань, 2018. Режим доступа: http://eJanbook.com . Загл. с экрана (дата обращения 14.05.2018).
- 4) Электронная библиотека [Электронный ресурс]: электронный каталог. СПб: ФГБОУ ВО СПбГАУ, 2018. Режим доступа: http://bibl.spbgau.ru/MarcWeb2/ExtSearch.asp, свободный. Загл. с экрана (дата обращения 14.05.2018).
- 5) Единый портал интернет-тестирования в сфере образования [Электронный ресурс]: Республика Марий Эл, г. Йошкар-Ола, 2008-2018, НИИ мониторинга качества образования. Режим доступа: http://i-exam.ru/node/122- Загл. с экрана (дата обращения 14.05.2018).
 - 6) Поисковые системы: Google, Yandex, Rambler.

10 Методические указания для обучающихся по освоению дисциплины

Проведение лекционных занятий по дисциплине предшествует проведению занятий семинарского типа (практических занятий).

Лекционные занятия имеют три формы проведения: 1-я форма - основана на применении наглядных материалов в виде плакатов и использования меловой доски; 2-я форма - основана на методике изложения материала занятия с применением мультимедийной техники; 3-я форма является комплексной, сочетающей в себе две предыдущих формы.

Выбор формы занятия зависит от его темы. Если раскрытие темы занятия требует выведения расчетных формул или знакомство с типовыми конструкторскими решениями элементов или узлов конструкции системы водоснабжения и водоотведения, то применяется 1-я форма проведения занятия.

Если для раскрытия темы занятия необходимо обучающихся познакомить с примерами конструкций, привести классификацию с

иллюстрациями (схемами), то применяется 2-я форма проведения занятия.

Если в процессе проведения лекционного занятия требуется использование элементов 1-й и 2-й форм проведения занятия, то применяется 3я форма - комплексная. По каждой теме лекционного занятия обучающимся выдаются вопросы для самостоятельной работы, направленные на углубленное изучение.

- В рамках занятий семинарского типа (практических занятий) рассматриваются следующие вопросы:
 - 1) Линейные электрические цепи постоянного тока;
 - 2) Однофазные электрические цепи синусоидального тока;
- 3) Трёхфазные электрические цепи. Электроснабжение. Эл. машины, привод, безопасность;
 - 4) Электроника.

Проведение практических занятий требует использования на них меловой доски и плакатного фонда. По каждой теме практического занятия выдаются задания для самостоятельного изучения.

Итоговым контролем при изучении дисциплины *«Электротехника и электроника»* является зачет. Подготовка к зачету по данной дисциплине осуществляется на протяжении всего семестра. Примерный перечень вопросов к зачету содержится в Фонде оценочных средств по дисциплине *«Электротехника и электроника»* и представлен в приложении к рабочей программе.

Указанные вопросы по дисциплине обновляются с учетом произошедших изменений.

Целью зачета по дисциплине *«Электротехника и электроника»* является проверка и оценка уровня полученных обучающимся специальных знаний по дисциплине, а также умения логически мыслить, реагировать и отвечать на дополнительные вопросы. Кроме этого, оценивается правильность речи обучающегося. Дополнительной целью итогового контроля в виде зачета является формирование у обучающегося таких качеств, как организованность, ответственность, трудолюбие, самостоятельность.

11 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Информационные технологии:

- 1. Электронные учебники
- 2. Технологии мультимедиа.
- 3. Технологии Интернет (электронная почта, электронные библиотеки, электронные базы данных).

Программное обеспечение:

- 1. Операционная система MS Windows XP
- 2. Операционная система MS Windows 7
- 3. Операционная система MS Windows 8 Prof

- 4. Операционная система MS Windows 10 Prof
- 5. Пакет офисных приложений MS Office 2007
- 6. Пакет офисных приложений MS Office 2013
- 7. Пакет программ для просмотра, печати электронных публикаций Acrobat Reader
- 8. Прикладное программное обеспечение для просмотра электронных документов Foxit Reader
- 9. Свободный файловый архиватор с высокой степенью сжатия данных 7zip

Специализированное программное обеспечение:

- 1. Компьютерная справочная правовая система Консультант + (бесплатная онлайн-версия для обучения)
- 2. Система автоматизированного проектирования и черчения Autocad for Students
- 3. Система трехмерного моделирования деталей Компас 3D Учебная версия для студентов

Программное обеспечение для лиц с ограниченными возможностями

- 1. Экранная лупа в операционных системах линейки MS Windows
- 2. Экранный диктор в операционных системах линейки MS Windows
- 3. Бесплатная программа экранного доступа NVDA

12 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для осуществления занятий лекционного и семинарского типа по дисциплине предусмотрена аудитория 640 во 2 учебном корпусе, расположенная по адресу: Санкт-Петербург, г. Пушкин, Академический проспект, д. 31.

Материально-техническое обеспечение аудитории:

- парты со скамьей 20 шт.;
- доска меловая 1 шт.;
- преподавательский стол 1 шт.;
- плакаты, макеты, наглядные пособия в соответствии с видом и темой учебного занятия.

13 Особенности реализации дисциплины (модуля) для инвалидов и лиц с ограниченными возможностями здоровья

Профессорско-педагогический состав знакомится психологофизиологическими особенностями обучающихся инвалидов ЛИЦ ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ в курсе предполагается использовать социально-активные и рефлексивные методы

обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Согласно требованиям, установленным Минобрнауки России к порядку реализации образовательной деятельности в отношении инвалидов и лиц с OB3, необходимо иметь в виду, что:

- 1) инвалиды и лица с OB3 по зрению имеют право присутствовать на занятиях вместе с ассистентом, оказывающим обучающемуся необходимую помощь;
- 2) инвалиды и лица с ОВЗ по слуху имеют право на использование звукоусиливающей аппаратуры.

При проведении промежуточной аттестации по дисциплине обеспечивается соблюдение следующих общих требований:

- проведение аттестации для инвалидов в одной аудитории совместно с обучающимися, не являющимися инвалидами, если это не создает трудностей для инвалидов и иных обучающихся при промежуточной аттестации;
- присутствие в аудитории ассистента (ассистентов), оказывающего обучающимся инвалидам необходимую техническую помощь с учетом их индивидуальных особенностей (занять рабочее место, передвигаться, прочитать и оформить задание, общаться с экзаменатором);
- пользование необходимыми обучающимся инвалидам техническими средствами при прохождении промежуточной аттестации с учетом их индивидуальных особенностей;
- обеспечение возможности беспрепятственного доступа обучающихся инвалидов в аудитории, туалетные и другие помещения, а также их пребывания в указанных помещениях.
- По письменному заявлению обучающегося инвалида продолжительность прохождения испытания промежуточной аттестации (зачета, экзамена, и др.) обучающимся инвалидом может быть увеличена по отношению к установленной продолжительности его сдачи:
- продолжительность сдачи испытания, проводимого в письменной форме, не более чем на 90 минут;
- продолжительность подготовки обучающегося к ответу, проводимом в устной форме, не более чем на 20 минут;
- В зависимости от индивидуальных особенностей обучающихся с ОВЗ Университет обеспечивает выполнение следующих требований при проведении аттестации:
 - а) для слепых:
- задания и иные материалы для прохождения промежуточной аттестации оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением для слепых, либо зачитываются ассистентом;

- письменные задания выполняются обучающимися на бумаге рельефноточечным шрифтом Брайля или на компьютере со специализированным программным обеспечением для слепых, либо надиктовываются ассистенту;
- при необходимости обучающимся предоставляется комплект письменных принадлежностей и бумага для письма рельефно-точечным шрифтом Брайля, компьютер со специализированным программным обеспечением для слепых;
 - б) для слабовидящих:
- задания и иные материалы для сдачи экзамена оформляются увеличенным шрифтом;
- обеспечивается индивидуальное равномерное освещение не менее 300 люкс;
- при необходимости обучающимся предоставляется увеличивающее устройство, допускается использование увеличивающих устройств, имеющихся у обучающихся;
 - в) для глухих и слабослышащих, с тяжелыми нарушениями речи:
- обеспечивается наличие звукоусиливающей аппаратуры коллективного пользования, при необходимости обучающимся предоставляется звукоусиливающая аппаратура индивидуального пользования;
 - по их желанию испытания проводятся в письменной форме;
- г) для лиц с нарушениями опорно-двигательного аппарата (тяжелыми нарушениями двигательных функций верхних конечностей или отсутствием верхних конечностей):
- письменные задания выполняются обучающимися на компьютере со специализированным программным обеспечением или надиктовываются ассистенту;
 - по их желанию испытания проводятся в устной форме.

О необходимости обеспечения специальных условий для проведения аттестации обучающийся должен сообщить письменно не позднее, чем за 10 дней до начала аттестации. К заявлению прилагаются документы, подтверждающие наличие у обучающегося индивидуальных особенностей (при отсутствии указанных документов в организации). При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.